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By the introduction of some ansatz equations, we have obtained several new 
classes of traveling (solitary) wave solutions to the nonlinear diffusion equation 

f l  (u)ut + fz(u)u:, + f3(U)Uxx + f4(u)u2x =fs(u) 

and the nonlinear wave equation 

f l  (U)Utt + f2(u) u, + f3(u)uxx + f4(U)Ux + fs(u) u2 -~ . . . . .  f6(u) 

Some applications of these solutions are discussed. 

Nonlinear partial differential equations have been studied intensively 
(Drazin and Johnson, 1989; Sachdev, 1987; Newell and Moloney, 1992). 
Searching for traveling wave solutions to this class of equations is an 
important topic, as traveling wave solutions provide a description of the 
propagation and/or aggregation processes related to some physical systems. 
However, due to the mathematical complexity of nonlinear partial differen- 
tial equations, few techniques have been introduced to obtain exact solu- 
tions (Drazin and Johnson, 1989; Sachdev, 1987; Newell and Moloney, 
1992; Lu et al., 1993; Ablowitz and Zeppetella, 1979; Murray, 1989; 
Hereman et al., 1986; Hereman and Takaoka, 1990; Coffey, 1990, 1992; 
Wang, 1988; Wang et al., 1990). The ansatz solution, reported in a recent 
letter by Lu et al. (1993), has shown that the nonlinear diffusion equation 

f l(u)u,  + f2(u)u~ + f3(u)uxx + U4(u)u 2 = f s ( U )  (1) 

where f. (i = 1, 2, 3, 4, 5) are polynomials of u, ut = du/&, u~ = Ou/Ox, 
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uxx =O2u/Ox2, has a general traveling wave solution 

u(y) = u(x - ct) = -~-~ tanh ~ a(x - ct - Co) 2b]  (2) 

for the condition 

[f2(u) - efl(u) + (a + bnu"- l ) f3(u  ) + (au + bu")f4(u)](au + bu") - f s ( u )  (3) 

In the above e i s t h e  speed of  the propagating waves, Co is a constant 
usually determined by the initial conditions, and a, b, and n are real  
constants which satisfy the conditions n # 1 and ab < O. 

In this paper we introduce some new ansatz equations which have not 
been considered in Lu et al. (1993) and obtain several new classes of 
traveling wave solutions for conditions which differ from equation (3). We 
also discuss the traveling wave solutions to some nonlinear wave equations. 
In the following sections we present the results of our present investiga- 
tions. We begin by extending the scope of  application of the traveling wave 
solution (2) to some nonlinear wave equations. We then introduce four new 
ansatz equations to solve the nonlinear diffusion equations and nonlinear 
wave equations. The conditions related to these ansatz solutions are also 
given. In addition we present some examples following each of  the ansatz 
solutions of  some possible applications to the  description of  physical 
systems. 

1. Let us consider the dissipative nonlinear wave equation 

f i  (u)u, +A(u )U ,  + f3(u)ux~ + f4(u)ux +fs(u)u  2 + . . . .  f6(u) (4) 

where u,, = O=u/at 2, and the coefficient functions f~ , fz , f3 , f4 , fs , f6 ,  etc., are 
algebraic functions of u. It can be shown that equation (2) is a traveling 
wave solution to equation (4) for the condition [similar to equation (3)] 

{f4(u) - c A ( u )  + (a + bnu"-  ')[c2fl(u) +f3(u)] 

+ (au + bun)fs(u) + "  "}(au + bu") - f6(u)  (5) 

In fact, using the transform ~ = x - c t ,  we find that equation (4) has the 
form 

e2fl (u)u" + [f4(u) - cf2(u)lu' +f3(u)u" +Js(u)(u') 2 +"  ;" =J~(u) (6) 

where u ' =  du/dy and u " =  d2u/dyL The ansatz introduced by Lu et al. 
(1993) is 

u' = au + bu" (7) 

which is the Bernoulli equation with constant coefficients. Thus, one has 

u " = a2u + ab(n + 1)u" + b2nu z"- 1 = (a + nbu"-  l)u" (8) 
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Equation (5) is obtained by substituting these results into equation (6). In 
order to illustrate the utilization of the technique to obtain traveling wave 
solutions for a particular problem, we present the following example. 

E x a m p l e  I. Let us consider the dissipative nonlinear Kle in-Gordon 
equation 

uxx - ?u, - u ,  = ~u - / 3 u  3 + 6u 5 

where ~, /3, ?, and 6 are real numbers which satisfy /3 -> 0 and ?, 6 > 0. 
Without the dissipation term, this equation is the higher-order approxima- 
tion comparing with the standard ~b4-model widely used in the field theory 
(Lee, 1988). 

First, we consider the nondissipative case, i.e., ? =0 .  When 
3/32= 16~6, we obtain the traveling wave solution as 

U(x__ct)=~I(3(X~I/2 F f~ ,I12 1 1 (~)I/2} I/2 

When the dissipation term is introduced, we obtain the traveling 
solution as 

-]1/4 
1 3 e2)j {[72C2+4~( 1 _e2)]1 /2~7c}1 /2  u ( x  - c t )  = ~ 6 ( 1  - 

{ " . F [ ? 2 c 2 - - } - 4 0 t ( I - - e 2 ) ] l / 2 ~ T C  _ Co)l} 1/2 
x 1 • <ann i 7(7 - -  c - ~  ( x  - c t  

where the speed of the wave e is given by the relationship 

e2 = 256~262 - 96~/326 + 9/34 - 48~7262 + 15/~272~ +_ 12/~72~(62 - 4cr 

256c~262 - 96~fl26 + 9/74 - 96~7262 + 30f12726 + 9?462 

Comparing the solutions to the nondissipative and dissipative equa- 
tions, it is easy to see that the dissipation term changes the system 
dramatically, although both have the kink-type traveling wave representa- 
tions. Furthermore, the speed of the waves e is an arbitrary constant for the 
nondissipative system, while it is restricted by the coefficients for the 
dissipative system. 

E x a m p l e  2. Let us consider the elastic-medium wave equation (Drazin 
and Johnson, 1989) 

bltt - -  Uxx - -  UxUxx - -  1.lxxxx ~ 0 

It is straightforward to obtain the traveling wave solution as 

. . [ - (c  2 1)1/2 -1 
u(x  - ct) = 6(c 2 - 1)1/2 tann I_ -~ (x  - ct - co) / + 6(e 2 - 1)1/2 

L Z 
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2. We can show that equations (1) and (4) have a different class of 
traveling wave solutions of  the form 

[4 u(y)  = u(x - cO = tan (x - ct - Co) 2az (9) 

where ao, al, and a2 are real numbers satisfying the relationship 
A = 4aoa2 - a~ > 0 under the conditions 

[f2(u) -- efl(u) + (al + 2a2u)f3(u) + (ao + alu + a2u2)J4(u)] 

• (ao+ al u + a2u 2) =fs (u )  (10) 

for equation (1) and 

{f4(u) - ef2(u) + (al + 2a2u)[e2fl (u) +f3(u)] 

+ (ao + al u + a2u2)fs(u) + . .  "}(ao + al u + a2u 2) -=f6(u) (11) 

for equation (4). Similarly, if we allow y = x - ct, then equation (1) has the 
form 

- efl (u)u' +f2(u)u '  +f3(u)u" +f4(u)(u ')  2 = f5 (u) (12) 

We introduce the ansatz 

u' = ao + alu q- a2u 2 (13) 

which is the Riccati equation with constant coefficients. Thus, we have 

u" = aoa 1 + (2a0a 2 + a2)u + 3a, a2 u2 + 2a29u 3 

= (a, + 2a2u)u" (14) 

Equations (10) and (11) can be obtained by substituting equations (13) and 
(14) into equations (12) and (6). In the case of  A = 4 a o a 2 - a 2 < O ,  the 
Riccati equation (13) can be transformed to the Bernoulli equation, and its 
solution can be expressed as 

u ( y ) = u ( x - e t ) =  ~ t a n h ~ X / - A ( x - ' c t - c o ) ]  al 2a2 L 2 - ~ (15) 

It is important to point out that the solution for A = 4aoa2 - a 2 < 0 is not 
a trivial case of Case 1 above when n = 2, which corresponds to a0 = 0 in 
the ansatz given by equation (13). In the following two examples this point 
will be demonstrated. 

Example 3. Let us consider the dissipative ~bg-model equation (Lee, 
1988) 

U x x  - -  ~ U  t - -  Utt = O~ll ~ f l U  3 

where ~, fl, and 7 are real numbers which satisfy ~ < 0 and fl, 7 > 0. 
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When 7 = O, it is easy to see that the ansatz of Case 1 is not applicable 
to the problem. Using Case 2, some algebra calculations yield the traveling 
wave solutions to the nondissipative 4~4-model equation of the form 

u ( x - c t ) =  tanh -2([~--c2)) ( x - - c t - e o )  for a < O  

} 
When the dissipative term is introduced, the traveling solutions have 

been changed dramatically as 

u(x - et) = ~ tanh [ -~(272 - 9~)] 1/2 
47 

• ~t~-;~-~-9~) ,-<o + ~ t ~ )  for ~ o  

1 (~) l la  tan{[~(272 -- 9~)] '/2 
u(x  - et) = 5 

I ( 9 ~  "/a -]] 1/~'~ '12 2- _9 7 for cz>0 

Example 4. Let us consider a generalized Fisher equation of the form 

U t --~?dxx =SU - -7 / /2 -6u  3 

where ~, 8, 7, and 6 are positive real numbers. If  we consider Case 1, we 
obtain the solutions 

U(X--Ct) -7 ! (4f l~  +72) 1/2 I -- 72)1t2 46 tanh 7 + (486 + , (8~6)~72 x 

I ~ 2~ t i CO 4~  

and 

u(x-c t )= 7+(4B6+72)~/2 I -+(486+r'2)t/2 
46 tanh 7 (8~6) ~/2 x 

+ 26 t - Co 46 

However, using the ansatz given in Case 2, we obtain a new solution: 

(486 + 72) l/2 
u ( x  - cO = +_ 

2(5 

; 
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3. This technique may be used to solve some nonlinear diffusion 
equations and wave equations. We consider equations (1) and (4), with 
coefficient functionsf~ , f 2 , f 3 , f 4 , f s , f r ,  etc., which are algebraic functions of  
u satisfying the relations 

[f2(u) - c f , ( u )  (a  2 .._-ux)l/zf3(u ) + (a2 - -u2 ) l / 2 f4 (u ) ] (aZ- -u2 ) l / 2~ f s (u )  

(16) 

for equation (1) and 

{f4 u (u) - cA(u)  (a 2 _ u2)l/e [c2f,(u) +f3(u)] 

2 _ u 2) ,/z A (u) + ' - . } ( a  z _ u 2) ,/2 = f6 (u) (17) + (a 

for equation (4). Introducing the ansatz 

U' = (a  2 - -  U 2) 1/2 (18)  

we obtain the solution as 

u(y )  = u(x  - ct) = a sin(x - ct - co) (19) 

This is a harmonic wave solution which only differs from the linear wave 
equation in the amplitude, which is determined by the nonlinear equation 
in the present case, while it is controlled by the initial conditions for the 
linear wave equation. 

E x a m p l e  5. Let us consider the following dissipative nonlinear wave 
equation: 

2 ~  0 Utt -- Uxx ~r ((X 2 U 2) l/2ut -~- U x 

Some straightforward algebra yields 

- c ( ~  2 _ u2)~/2  u ( c  2 - 1) ( ~ _ u ~ 2  ~ (a 2 -  u~) '/~ =- 0 

This equality requires a = ~ and c = 1. The harmonic wave solution to this 
equation is given by 

u(x  - ct) = ~ sin(x - t - Co) 

4. This technique may be extended to more complex cases of  the 
nonlinear diffusion equation and nonlinear wave equation. We consider 
equations (1) and (4) with coefficient functions f l , f 2 , f 3 , f 4 , f s , f 6 ,  etc., 
which are triangle functions of  u satisfying the re la t ions 

[f2(u) - cA (u) + ab cos(bu)f3(u)  + a sin(bu)f4(u)]a sin(bu) = f s ( u )  (20) 
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for equation (1) and 

{fa(u) -cf2(u) + ab cos(bu)[c2fl (u) +f3(u)] 

+ a sin(bu)fs(u) + . . . } a  sin(bu) -f6(u) (2l) 

for equation (4). Introducing the ansatz 

u' = a sin(bu) (22) 

we obtain the solitary wave solution 

u(y)  = u(x - ct) = 2 b - l  arctan{exp[ab(x - ct - co)]} (23) 

Two practical examples of this case are as follows. 

Example 6. Consider the sine-Gordon equation 

Uxt = ~ sin(u) 

where a is a real number. This equation has been used widely in the 
physical sciences (Gronbech-Jensen et al., 1993; Sorensen et al., 1993; 
Wang and Yao, 1993). Using the ansatz given by (22), we can easily obtain 
the solution as 

u ( x - c t ) = 4  arctan{expl + ( ~ ) m  ( x - c  0 - Col } 

Example 7. Consider a dissipative sine-Gordon equation 

U~x - 7u, - u ,  = ~l sin(flu) + ~2 sin(2flu) 

where ~ ,  a2, fl, and y are positive real constants. This equation may be 
regarded as a phenomenological representation of the dissipation and a 
higher-order approximation compared with the original sine-Gordon equa- 
tion. It is easy to obtain the solitary wave solutions as 

u(x - ct) = ~ arctan exp _ fl(2c~2 x . . . .  t -. Co 
P 

When ~2 = 0, this solution reduces to 

2 arctan~exp~+Cqfl (x T-t  - c 0 ) l }  u(x - ct) = -~ t t_ 

5. We now give another example for the complex cases of the nonlin- 
ear diffusion equation and the nonlinear wave equation. We consider 
equations (1) and (4), with coefficient functions f , , A , A , f n , f s , A ,  etc., 
which are also triangle functions of u satisfying the relation 

[f2(u) -c f l (u )  + ab sin(2bu)f3(u ) + a sin2(bu)f4(u)]a sin2(bu) - f s (u)  (24) 
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for equation (1) and 

{f4(u) - c~(u) + ab sin(Zbu)[c2ft (u) +f3(u)] 

q- a sin2(bu)fs(u) + . . . }a  sinZ(bu) - f6(u)  

for equation (4). By introducing the ansatz 

(25) 

u' = a sin2(bu) = 2 [ 1 - cos(2bu)] (26) 

we obtain the solitary wave solution as 

u( y) = u(x - ct) = - b - I  arccot[ab(x - ct - co)] (27) 

Example 8. Similarly, we consider a sine-Gordon-like equation 

Uxx - 7u, - u.  = ~1 sin2(fl u) + a2 sin3(fl u) cos(flu) 

where ~ ,  ~2, and fl are real constants. It is easy to obtain the solitary wave 
solution as 

u(x ct) - f l -  arcc~ + [  ~2~fl +~ ~' = ~ - ~ 2  : j  ~ - - - t 7  - c ~  

When ~2 = 0, this reduces to 

u ( x - c t )  = - f l - l  arcc~ +~lfl (x 'T '~  7 

In this case, the speed of the propagating wave c = I/fl is independent of  
the damping 7 and coupling factor ~ .  

It is worthwhile to point out that, as illustrated in Examples 1, 3, 7, 
and 8, the dissipation term can change the traveling wave solutions 
dramatically due to the high nonlinearity of  the equations. 

It has been generally shown that the (1 + l)-dimensional traveling 
wave solutions could be generalized to some higher-dimension equations 
(Drazin and Johnson, t989). For the same reason, the ansatz solutions 
given in this paper can easily be generalized to higher-dimension equations 
as well. 

In summary, we have extended the scope of the application of the 
ansatz solution given by Lu et al. By introducing four new ansatz equa- 
tions, we have obtained four new classes of traveling (and/or solitary) wave 
solutions to some nonlinear diffusion equations and nonlinear wave equa- 
tions. We have also presented typical examples to illustrate the application 
of these ansatz solutions to some particular problems. 
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